Using Video Prompting to Teach Cooking Skills to Secondary Students with Moderate Disabilities

Tara B. Graves
Franklin County Schools

Belva C. Collins, John W. Schuster, and Harold Kleinert
University of Kentucky

Abstract: Three secondary students with moderate disabilities acquired cooking skills through a constant time delay procedure used with video prompting. A multiple probe design was used to evaluate effectiveness of the procedure to teach preparation of a food item (a) on a stove, (b) in a microwave, and (c) on a countertop. The procedure was effective for each student. Guidelines for using videotapes in the instruction of functional skills are discussed.

The purpose of special education is to teach students to live as independently as possible. This means students with moderate to severe disabilities must learn to perform daily living skills, such as food preparation. Learning to prepare food enhances independence in the home and also may lead to employment in the community. Numerous investigations have focused on teaching food preparation skills to students with disabilities (e.g., Johnson & Cuvo, 1981; Martin, Rusch, James, Decker, & Trtoll, 1982; Robinson-Wilson, 1977; Schleien, Ash, Kiernan, & Wehman, 1981). For example, Schuster, Gast, Wolery, and Guiltinan (1988) used a constant time delay (CTD) procedure to teach food preparation skills (i.e., making a sandwich, boiling a bag item, baking canned biscuits) to four students with moderate disabilities in a one-to-one format.

In later investigations, Hall, Schuster, Wolery, Gast, and Doyle (1992) used a CTD procedure to teach food preparation (i.e., making a Spanish omelet, microwaving a cake, baking a tuna casserole) to two dyads of students with moderate mental disabilities, and Griffen, Wolery, and Schuster (1992) used a CTD procedure to teach food preparation skills (i.e., preparing a milkshake, scrambled eggs, and pudding) to a triad of students with moderate mental disabilities in a simultaneous prompting procedure. Schuster and Griffen (1993) extended this approach when they used a simultaneous prompting procedure to teach four students with moderate mental disabilities to make juice. Finally, Fiscus, Schuster, Morse, and Collins (2002) used a CTD procedure to teach food preparation skills (i.e., making cheese and crackers, waffles with syrup, and chocolate milk) to four elementary students with moderate mental disabilities and found that the students acquired 80 to 100% of the nontarget information, presented as instructive feedback during each trial. Types of nontarget information were related to the task (i.e., identification of words and sentences in the picture recipe book) as well as unrelated to the task (i.e., identification of kitchen utensils). Each of these investigations combined a systematic response prompting procedure (i.e., CTD or simultaneous prompting) with a picture recipe book to teach food preparation skills.

This investigation was completed to partially satisfy the thesis requirement for a Master’s degree at the University of Kentucky. Correspondence concerning this article should be addressed to Dr. Belva C. Collins, University of Kentucky, Department of Special Education and Rehabilitation Counseling, 229 Taylor Education Building, Lexington, KY 40506-0001. E-mail: bcoll01@uky.edu

34 / Education and Training in Developmental Disabilities-March 2005
Use (potatoes) in a microwave. Use of a hierarchy of indirect verbal, direct verbal, gestural, and model prompts gave the instructor the opportunity to embed nontarget information in each step of each trial. This included safety and nutrition facts in delivery of prompts as well as in delivery of feedback at the end of steps. Participants acquired the nontargeted information as well as the target skills.

Research has shown that use of video can be both an effective and an efficient way to teach daily living skills to students with disabilities. For example, investigators have used video in teaching community skills to students with moderate mental disabilities (Branham, Collins, Schuster, & Kleinert, 1999), self-protection skills to kindergarten and first grade students (Poche, Yoder, & Miltenberger, 1988), oral hygiene skills to children in a Headstart program (Murray & Epstein, 1981), and self-care skills to students with moderate mental disabilities (Norman, Collins, & Schuster, 2001).

In particular, Haring, Kennedy, Adams, and Pitts-Conway (1987) showed a videotape of peers without disabilities modeling purchasing skills to facilitate generalization in three adults with autism before taking them into the community. Poche et al. (1988) found that use of video with behavior rehearsals was more efficient than other strategies in teaching abduction prevention skills to 74 children. Charlop and Milstein (1989) found video modeling to be effective in teaching generalized conversational skills to three students with autism. Cuvo and Klatt (1992) found that a combination of flashcard instruction and video resulted in generalization of reading survival words in the community by six students with mild to moderate disabilities. Finally, Alcantara (1994) used videotapes to teach purchasing skills in the community to three students with autism.

Several investigations have combined video with systematic response prompting procedures to teach daily living skills. For example, LeGrice and Blampied (1994) combined a CTD procedure with video to teach four participants with moderate disabilities to use a computer and a video recorder. Branham et al. (1999) used a CTD procedure to teach community skills (i.e., mailing a letter, cashing a check, and crossing a street) to three students with moderate mental disabilities in the following formats: (a) community-based instruction (CBI) alone, (b) classroom simulation plus CBI, and (c) videotape instruction plus CBI. While all three formats were effective, the use of videotape instruction plus CBI was the most time efficient. Norman et al. (2001) also used a CTD procedure with video when they taught self-care skills (i.e., cleaning sunglasses, putting on a wristwatch, and zipping a jacket) to three students with moderate disabilities. While Branham et al. used videotape showing still frames of peers without disabilities performing the target skills, Norman et al. used a subjective viewpoint of the task (student’s viewpoint of the task as he or she would perform it) and added visual words to the auditory prompting on the videotape. Like Branham et al., Norman et al. showed a preview of the entire task before showing the students a video of each step separated by dark frames. Again, the procedure was effective.

Video also has been streamed on computers to teach functional skills. For example, Mechling, Gast, and Langone (2002) used computer-based video to teach grocery skills to four students with moderate mental disabilities. Using a SLP procedure in conjunction with multiple exemplars of video of grocery stores streamed on the computer screen, the instructors prompted the students through locating items on a grocery list, touching the correct aisle sign, and touching the item on the shelf. The students were able to generalize the skills they acquired to a novel grocery store.

Cooking programs often demonstrate food preparation on television, and these programs can be used repeatedly for instruction if videotaped. Although the literature contains numerous investigations on the systematic instruction of food preparation skills and numerous investigations on systematic instruction using video, no investigation has used videotape to teach food preparation skills to students with disabilities. Because most schools and homes have access to a videotape player and because the use of video has been effective in teaching other skills, this investigation focused on teaching food preparation skills through systematic instruction using video. Unlike the previous investigations (Branham et al., 1999; Norman et al., 2001), the
instructor in the present investigation did not deliver verbal prompts or correct errors with physical guidance. Specifically, the investigation attempted to answer two questions: (a) Is video prompting effective in teaching food preparation skills to secondary students with moderate disabilities, and (b) will the skills generalize to novel trainers, settings, and materials?

Method

Participants

One male and two females in a self-contained public high school classroom for students with functional mental disabilities (FMD) (i.e., moderate to severe disabilities) were participants in the investigation. Joe was a 16 year old male with a moderate mental disability and Down syndrome. He participated with modification in keyboarding and drama classes and received speech/language and occupational therapy. Based on the Wechsler Intelligence Scale for Children - Revised (WISC-R, Wechsler, 1974), Joe had an IQ of 51. His Individual Education Plan (IEP) included objectives for speech production, communication, social skills, and domestic skills (i.e., shopping and food preparation). Joe was socially outgoing and had a strong work ethic. He could stay on task and follow directions. Joe’s weakness was his inability to read all written directions.

Alley was an 18 year old female with a moderate mental disability and a communication disorder. She received special education services on a resource basis, participated in community-based instruction (CBI), and used modifications in physical education and basic guitar classes with peers without disabilities. Alley received speech/language and occupational therapy services. Based on the WISC-R (Wechsler, 1974), she had an IQ of 45. Her IEP included objectives for domestic skills (i.e., survival word recognition and cooking), math skills (i.e., money and shopping skills), and communication. Alley had the ability to identify people, follow directions, and remain on task. Her weakness was the inability to speak intelligibly and in complete sentences.

Kelly was a 20 year old female with a moderate mental disability. Based on the WISC-R (Wechsler, 1974), Kelly had an IQ of 49. She received special education services on a resource basis, participated in CBI, and used modifications in drama and human development classes with peers without disabilities. Kelly’s IEP objectives were for social skills, functional academics (i.e., written expression and reading), and math skills (i.e., shopping and food preparation). While her reading and comprehension skills were strengths, she had weaknesses in the ability to stay on task. Kelly often gazed around the room while twisting her hair and was easily distracted by her surroundings.

The teacher assessed the following prerequisite skills through observations: (a) ability to wait 5 s, (b) ability to attend to task for 20 min, (c) ability to follow a verbal direction, (d) ability to imitate a visual model, and (e) visual acuity to watch a videotape. Parent permissions were obtained for all participants.

Setting

The teacher conducted screening, baseline, and training sessions in a one-to-one format with each participant. Instruction took place in the kitchen area of the FMD resource classroom. The students stood in front of the television and counter, stove, or microwave while performing the task presented on the video. Other students were engaged in seatwork or small group instruction at their desks or classroom tables. The teacher or classroom assistant verbally redirected any students who distracted the participants during instruction.

Materials and Equipment

Materials and equipment for the investigation included a 25 in. color television with a VCR and a video prompting tape for each targeted cooking skill (i.e., stove item, microwave item, and counter item). Additional materials included data sheets, cooking supplies (e.g., pots, pans, spoons), and food items.

The video prompting tapes used a subjective viewpoint (Norman et al., 2001) to demonstrate the cooking tasks so that the student saw the task performed on the video from the same viewpoint that would be seen if the student performed the task. Each video started by verbally stating the Sd (e.g., “Cook the
and the teacher alternated between videotapes that used male and female voices. Following the Sd for the task, the videotape showed a model of the task from start to finish and then again delivered the verbal Sd. A delay interval of 0 s or 5 s then occurred. On the 0 s delay videotape, a verbal prompt paired with a model prompt of the first step of the chained task immediately occurred, and, on the 5 s delay videotape, a verbal prompt paired with a model prompt of the first step occurred following a 5 s delay interval. After each step was prompted, a 20 s colored frame appeared, giving the student 20 s to perform the prior step and/or the next step of the chain before the videotape prompted a subsequent step of the task analysis.

Skill Selection

The teacher selected the target food preparation skills through preference testing of the participants and interviews with their parents, taking into account the availability of the foods and equipment in the home setting. The target skills were similar in difficulty and number of steps per task analysis. The IEPs of each participant contained cooking or food preparation objectives, and the parents had addressed these skills in planning for future assisted living. Based on this information, the investigators targeted the following skills: (a) a stovetop skill of preparing noodles (i.e., Ramen Noodles), (b) a microwave skill of preparing macaroni (i.e., Mac n Minutes), and (c) a countertop skill of making a sandwich (i.e., peanut butter and jelly). Task analyses for each of these skills can be found in Table 1.

Data Collection

The teacher collected data on each participant’s ability to perform each step of the task analysis during screening, baseline, and training sessions. She recorded a (+) for each correct response and a (−) for each incorrect response. She defined a correct response as completing the step independently within the allotted response interval (20 s) following the Sd or the previously completed step. She defined an incorrect response as (a) not performing the step correctly (topographical error), (b) not performing the step in the correct order (sequence error), (c) not completing the step within the allotted response interval (20 s) following the Sd or previously completed step (duration error), or (d) failing to initiate a response within 5 s of the verbal Sd or previously completed step.

Until a participant performed 100% correct responses for two sessions, the teacher used videotapes containing a 0-s response interval. During all subsequent instructional sessions, she used videotapes with a 5-s delay interval. During these CTD sessions, the teacher recorded a (+) in the “before” column when the students completed a step correctly and independently within the allotted response interval (20 s) following the Sd or the previously completed step and a (+) in the “after” column when the student completed the step correctly within 20 s following the video prompt. The teacher recorded a (−) in the “before” column for each incorrect response within 20 s following the Sd or the previously completed step and a (−) in the “after” column for each incorrect response within 20 s following the prompt. The teacher also recorded a “T” for each topographical error, an “S” for each sequential error, and a “D” for each duration error. If a participant failed to initiate a response within 5 s of the prompt, the teacher recorded “NR” for no response.

Procedure

General procedures. The teacher taught the target food preparation skills in a one-to-one format using a CTD procedure with video prompting. As previously described, the teacher used videotapes that gave the student either 0 s or 5 s to initiate a step and 20 s to complete a step. If the student did not initiate the step during the response interval (e.g., 5 s), the video provided a verbal prompt paired with a model prompt. During instruction, each student stood in front of the microwave, the stove, or the counter with the television positioned so the student could view the videotape while performing the target skill. Sessions took place Monday through Friday. Each session began with the teacher delivering the attentional cue (i.e., “Are you ready to cook?”). Using a multiple opportunity format, the teacher allowed the students to complete
all of the steps of the task analysis, even if errors occurred.

Baseline/probe procedures. Baseline conditions occurred prior to intervention. The teacher collected baseline data on each skill in a one-to-one format for a minimum of two sessions or until data were stable. A trial began with the teacher stating the Sd (i.e., “Cook the”). She then waited 5 s for the student to initiate the first step of the task and 20 s for the student to complete the step. If the student completed the step correctly, the teacher marked a (+) on the data sheet, delivered verbal praise, and waited 5 s for the student to initiate the next step and 20 s for the student to complete the step. If the student made an incorrect response or no response, the teacher recorded the type of error and told the student to turn away while she completed the step for the student. She then stated a verbal Sd to perform the next step and waited 5 s for the student to initiate the step and 20 s for the student to complete the step. The process continued until the student completed the task analysis. Throughout the session, the teacher praised attention on a variable ratio schedule of every two steps (VR2).

Independent variable. The teacher began instruction after baseline data were stable. Instructional sessions occurred in a one-to-one format with the student standing in front of the television. The teacher counterbalanced which student went first each day and used a CTD procedure with video prompting to teach each targeted cooking skill. Each instructional session began with the teacher delivering an attentional cue (i.e., “Let’s cook.”).

Table 1

Task Analyses of Target Food Preparation Skills

<table>
<thead>
<tr>
<th>Micro-microwave Macaroni and Cheese</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Get 1 C. measuring cup.</td>
</tr>
<tr>
<td>7. Go to sink with measuring cup.</td>
</tr>
<tr>
<td>10. Fill measuring cup to top with water.</td>
</tr>
<tr>
<td>11. Pour into saucepan.</td>
</tr>
<tr>
<td>15. Put noodles only into water.</td>
</tr>
<tr>
<td>17. Wait 3 minutes.</td>
</tr>
<tr>
<td>18. Turn dial to off.</td>
</tr>
<tr>
<td>20. Pour contents into water.</td>
</tr>
<tr>
<td>22. Clean up.</td>
</tr>
</tbody>
</table>
While hearing the verbal directions on the videotape, the student watched the video model of the entire task. The video then delivered the verbal Sd for the task. During 0 s delay sessions, the videotape showed a model of the first step of the task analysis accompanied by a verbal prompt. The videotape then froze with a colored frame, and the student had 20 s to perform the step before delivery of the prompt for the next step. Training sessions used videotapes with a 0-s delay interval until the student reached 100% for two days. During 5 s delay sessions, the student had 5 s to initiate a step before the delivery of the video prompt. This was followed by a still colored frame of 20 s to complete the step and initiate the next step of the task analysis. If the student performed an incorrect response before the prompt, the teacher said, “No, wait if you are not sure.” If the student performed an incorrect response after the prompt, the teacher rewound the videotape to show the prompt until the student performed the response correctly. If the student required more than 20 s to complete a step, the teacher paused the videotape until the student completed the step and recorded a duration error. During instructional sessions, the teacher praised correct responses on a continuous reinforcement schedule (CRF) until the student reached 100% criterion for two days. She then thinned praise to a variable ratio schedule of every four steps (i.e., VR4) until the students performed at 100% criterion for one additional day.

Maintenance. The teacher conducted maintenance sessions during the second week after each student reached criterion on a skill. There were no video prompts during maintenance sessions. The teacher praised correct responses on a VR4 schedule. She interrupted all incorrect responses and modeled the correct response for the students. She also encouraged students to use the skills at home and then conducted telephone interviews to monitor home performance.

Experimental Design

The authors used a multiple probe across behaviors design replicated across students to evaluate the effectiveness of the CTD procedure with video prompting. The instructor (first author) taught the second skill after the first skill reached criterion but could not teach the third skill due to the school year ending.

Reliability

A classroom team teacher who held a degree in moderate/severe disabilities or a classroom assistant collected dependent and independent variable reliability data on a weekly basis for a total of 26% of all sessions across participants. The measured teacher behaviors (independent variable) included (a) giving a general attention cue, (b) completing the data sheet, (c) having materials ready, (d) starting the videotape, (e) manipulating the prompting on the videotape with a remote control (i.e., forwarding or rewinding), and (f) praising correct responses. The teacher calculated independent variable reliability agreement by dividing the number of observed behaviors by the number of planned behaviors and multiplying by 100 for each variable (Brown & Snell, 2000). Independent variable reliability agreement was 93% or higher throughout the investigation, with a mean of 100% for Joe, 94% for Alley, and 97% for Kelly. Procedural errors consisted of the teacher failing to deliver verbal praise after correct responses.

The teacher calculated dependent variable reliability agreement by using the point-by-point method and dividing the total number of agreements by the total number of agreement plus disagreements and multiplying by 100 (Brown & Snell, 2000). Dependent variable reliability agreement was 86% or higher throughout the investigation with a mean of 90% for Joe, 92% for Alley, and 94% for Kelly.

Results

Figures 1, 2, and 3 present performance data for this investigation and indicate the effectiveness of a CTD procedure with video prompting in teaching food preparation skills (i.e., Ramen noodles on the stove, Mac n Minutes in the microwave, and peanut butter and jelly on the countertop) to 3 students with moderate disabilities. Participants reached criterion on two target skills in an average of 10.3 sessions each.
Figure 1. Graphic data for Joe. Open circles represent correct responses before the prompt, and open triangles represent correct responses after the prompt.
Figure 2. Graphic data for Alley. Open circles represent correct responses before the prompt, and open triangles represent correct responses after the prompt.
Figure 3. Graphic data for Kelly. Open circles represent correct responses before the prompt, and open triangles represent correct responses after the prompt.
Joe met criterion of 100% correct responses for three sessions when cooking noodles (total of 10 sessions) and making a sandwich (total of seven sessions). He made only sequential errors during instruction and maintained the skills over time. Total training time for cooking noodles was 1 hr 59 min for noodles with a mean of 13 min per session (range = 11 to 18 min). Total training time for making a sandwich was 19 min with a mean of 4 min per session.

Alley met criterion of 100% correct responses for three sessions when making a sandwich (total of 12 sessions) and microwaving macaroni (total of eight sessions). She made sequential and topographical errors during instruction and maintained the skills over time. Total training time for making a sandwich was 60 min with a mean of 6 min per session (range = 3 to 11 min). Total training time for microwaving macaroni was 1 hr 31 min with a mean of 13 min per session (range = 10 to 18 min).

Kelly met criterion of 100% correct responses for three sessions when microwaving macaroni (total of nine sessions) and cooking noodles (total of nine sessions). She made sequential and topographical errors during instruction and maintained the skills over time. Total training time for microwaving macaroni was 1 hr and 30 min with a mean of 9 min per session (range = 7 to 16 min). Total training time for cooking noodles was 1 hr 22 min with a mean of 14 min per session.

In addition to the number of sessions to criterion and instructional time (which included down time while items were cooking), the teacher also calculated the cost of materials. The total food cost for the entire investigation was $34.64. The mean cost per skill per student was $8.67 for macaroni, $2.88 for noodles, and $5.77 for peanut butter and jelly sandwiches. There was no cost for making the videotape since this was done by school personnel and students in a video class; the teacher only had the expense of purchasing blank videotapes.

Discussion

Data indicate that the CTD procedure with video prompting was an effective way to teach food preparation skills (i.e., Ramen noodles on a stove, Mac n Minutes in the microwave, and peanut butter and jelly sandwich on the countertop). The participants required the same or fewer sessions to criterion on the second skill taught, indicating that they were “learning to learn” with the procedure. Factors that may have contributed to the success of the procedure could include the students’ familiarity with the CTD procedure, motivation due to the novelty of learning from videotape, and the natural reinforcement of consuming the cooked food items.

Although the teacher did not collect formal data during summer vacation, parents reported to the teacher that each participant generalized each skill to the home setting. Joe was making Ramen Noodles and peanut butter and jelly sandwiches independently at home for his family members and had generalized the skills to making soup and other types of sandwiches (e.g., ham and cheese). He had made lunch for his father several times during the summer. Alley made peanut butter and jelly sandwiches and Mac n Minutes at her grandmother’s vacation home. Kelly made Mac n Minutes and Ramen Noodles at home; however, the microwave in her home differed from the one in the classroom and was adapted by placing a sticker by 4 min on the dial. Her home measuring cup also was adapted by placing a sticker at the correct marker. In summary, all three participants generalized and maintained the skills they acquired through video prompting. Since the data show the CTD procedure with video prompting to be effective in teaching cooking skills to students with moderate disabilities, teachers may consider producing similar videotapes for both cooking as well as for other skills (e.g., community skills).

One factor to consider in replicating this investigation is the making of the videotape. Instead of producing the videotape herself, the teacher relied on the experience of others (i.e., video class instructor and students) to help produce the videotape. It took a good deal of time to produce videotapes using both male and female voices and to insert blank frames for 0 s and 5 s delay intervals and 20 s response intervals. The process required multiple edits before the final videotapes were produced.
ready. An additional challenge in using videotapes was the difficulty the teacher had during instruction in fast forwarding to the next prompt when a tape was set up for a special delay interval. She found that she often fast forwarded through the step and had to rewind. These problems, however, were minor.

A problem inherent to the task itself was that students experienced down time while waiting for water to boil or items to cook. Others who teach cooking skills using video prompting may want to use this downtime in a productive manner by inserting non-target information. For example, Jones and Collins (1997) stated safety and nutrition facts while potatoes were cooking in the microwave, and Fiscus et al. (2002) followed instructional trials by presenting and naming cooking utensils. If words or sentences are presented on the videotape, the instructor could use downtime to call attention to and review these based on the results of the Fiscus et al. study in which the students learned to read words and sentences that accompanied pictures in their recipe books.

A limitation to the investigation is that the students only learned two skills each due to the end of the school year. There were, however, six replications of the effectiveness of the procedure by the time the investigation ended, which is sufficient to build believability in the procedure.

In spite of this limitation and other problems mentioned above, video prompting appears to be an efficient way to teach cooking skills. Once the teacher purchased the blank videotapes, there were no other costs of producing the videotape since a business teacher from the high school and a few students from his Video Production class recorded and produced the videotape at no cost using iMovie software and an iMac computer. They downloaded the task from a video recorder to a VHS tape using a TV/VCR available in the school’s library. While producing videotape was a good class project (and would make a good service learning project), the procedure was easy enough that the teacher, if needed, could have done this independently following minimal instruction. In the Branham et al. (1999) investigation, the teacher independently made the videotape using school equipment, and, in the Norman et al. (2001) investigation, the teacher made the videotape at no cost with the assistance of a university staff person.

The authors of this investigation have several recommendations for other teachers who might want to use video prompting (Collins, 2003). First, select functional skills for instruction; community chained tasks can be taught with videotapes in simulations (Branham et al., 1999; Mechling et al., 2002) while domestic or self-care tasks (Norman et al., 2001) can be taught directly from videotapes in the classroom setting. Second, construct task analyses prior to shooting the videotape; the task analyses can be a guide for editing the videotape (e.g., inserting delay intervals). Third, determine the viewpoint prior to shooting the videotape; a subjective viewpoint may be more appropriate for tasks that use fine motor skills (e.g., cooking) while a view of the target student or another person (e.g., peer) at a distance may be more appropriate for community tasks with gross motor skills (e.g., crossing a street). Fourth, consider involving students, peers, and other personnel in the shooting of the videotape; also, consider using a tripod for videotaping stationary tasks and a handheld camera with a zoom lens for shooting tasks that require difficult angles. Fifth, after shooting the videotape, determine if it should be edited; students can either watch a videotape (with or without audio and graphics) in its entirety before performing a task or can watch individual steps with inserted response intervals for performing one step at a time. Sixth, use video prompting within the context of a systematic response prompting procedure; while this study used CTD, other procedures (e.g., simultaneous prompting, system of least prompts) also may be effective. Seventh, decide who will operate the videotape; while the teacher used the remote control as the students attended to cooking in this investigation, teaching students to use the remote control independently may free up teacher time. Eighth, determine a schedule for collecting data on student performance; the teacher in this investigation collected data on a daily basis, but the use of a simultaneous prompting procedure would require the teacher to collect data only during probe trials (which could be less frequent) and not during instructional
trials. Ninth, determine the teacher’s role in delivering consequences; the teacher can either allow the student to self-correct after rewinding the tape or the teacher can intercede to help the student correct the error. Finally, consider adding nontargeted information to the task (Fiscus et al., 2002; Jones & Collins, 1997) to increase the efficiency of learning; for example, students may learn to read words and sentences from repeated exposure while watching the videotape.

The investigation adds to the research literature on instruction with video (e.g., Branham et al., 1999; Norman et al., 2001; Poche et al., 1988) because it focused on cooking skills. In addition, the teacher was less involved in instruction than in other investigations, since she rewound the videotape to show students how to correct their own errors instead of physically intervening. Future research should include replicating the study across other settings (e.g., community, home, employment) and other across skills (e.g., domestic, vocational, self-help, leisure). In addition, comparison studies should compare video prompting with CTD to video prompting with other response prompting procedure (e.g., SLP, simultaneous prompting), as well as continuing to investigate the streaming of video on computers to teach functional skills (Mechling et al., 2002).

Video prompting can be a motivating procedure for teaching students new tasks. The participants in this investigation appeared to enjoy watching the videotapes as they cooked. They often repeated the steps out loud with the videotape and giggled when they completed the step correctly with the model on the videotape. It is possible that video prompting could be successful in teaching skills to students with less teacher involvement (e.g., having students operate the remote control themselves), freeing up more time for teachers to deliver instruction to other students in the class. Also, video prompting can provide a permanent model for the students that can be used across settings. For example, as in the present investigation, video prompting could be used to provide a video cookbook for each student to enhance both generalization and maintenance.

References

Received: 7 August 2003
Initial Acceptance: 25 September 2003
Final Acceptance: 15 January 2004